14 research outputs found

    Human Preference-Based Learning for High-dimensional Optimization of Exoskeleton Walking Gaits

    Get PDF
    Optimizing lower-body exoskeleton walking gaits for user comfort requires understanding users’ preferences over a high-dimensional gait parameter space. However, existing preference-based learning methods have only explored low-dimensional domains due to computational limitations. To learn user preferences in high dimensions, this work presents LINECOSPAR, a human-in-the-loop preference-based framework that enables optimization over many parameters by iteratively exploring one-dimensional subspaces. Additionally, this work identifies gait attributes that characterize broader preferences across users. In simulations and human trials, we empirically verify that LINECOSPAR is a sample-efficient approach for high-dimensional preference optimization. Our analysis of the experimental data reveals a correspondence between human preferences and objective measures of dynamicity, while also highlighting differences in the utility functions underlying individual users’ gait preferences. This result has implications for exoskeleton gait synthesis, an active field with applications to clinical use and patient rehabilitation

    Preference-Based Learning for Exoskeleton Gait Optimization

    Get PDF
    This paper presents a personalized gait optimization framework for lower-body exoskeletons. Rather than optimizing numerical objectives such as the mechanical cost of transport, our approach directly learns from user preferences, e.g., for comfort. Building upon work in preference-based interactive learning, we present the CoSpar algorithm. CoSpar prompts the user to give pairwise preferences between trials and suggest improvements; as exoskeleton walking is a non-intuitive behavior, users can provide preferences more easily and reliably than numerical feedback. We show that CoSpar performs competitively in simulation and demonstrate a prototype implementation of CoSpar on a lower-body exoskeleton to optimize human walking trajectory features. In the experiments, CoSpar consistently found user-preferred parameters of the exoskeleton’s walking gait, which suggests that it is a promising starting point for adapting and personalizing exoskeletons (or other assistive devices) to individual users

    DIP-RL: Demonstration-Inferred Preference Learning in Minecraft

    Full text link
    In machine learning for sequential decision-making, an algorithmic agent learns to interact with an environment while receiving feedback in the form of a reward signal. However, in many unstructured real-world settings, such a reward signal is unknown and humans cannot reliably craft a reward signal that correctly captures desired behavior. To solve tasks in such unstructured and open-ended environments, we present Demonstration-Inferred Preference Reinforcement Learning (DIP-RL), an algorithm that leverages human demonstrations in three distinct ways, including training an autoencoder, seeding reinforcement learning (RL) training batches with demonstration data, and inferring preferences over behaviors to learn a reward function to guide RL. We evaluate DIP-RL in a tree-chopping task in Minecraft. Results suggest that the method can guide an RL agent to learn a reward function that reflects human preferences and that DIP-RL performs competitively relative to baselines. DIP-RL is inspired by our previous work on combining demonstrations and pairwise preferences in Minecraft, which was awarded a research prize at the 2022 NeurIPS MineRL BASALT competition, Learning from Human Feedback in Minecraft. Example trajectory rollouts of DIP-RL and baselines are located at https://sites.google.com/view/dip-rl.Comment: Paper accepted at The Many Facets of Preference Learning Workshop at the International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA, 202

    Dueling Posterior Sampling for Preference-Based Reinforcement Learning

    Get PDF
    In preference-based reinforcement learning (RL), an agent interacts with the environment while receiving preferences instead of absolute feedback. While there is increasing research activity in preference-based RL, the design of formal frameworks that admit tractable theoretical analysis remains an open challenge. Building upon ideas from preference-based bandit learning and posterior sampling in RL, we present Dueling Posterior Sampling (DPS), which employs preference-based posterior sampling to learn both the system dynamics and the underlying utility function that governs the user's preferences. Because preference feedback is provided on trajectories rather than individual state/action pairs, we develop a Bayesian approach to solving the credit assignment problem, translating user preferences to a posterior distribution over state/action reward models. We prove an asymptotic no-regret rate for DPS with a Bayesian logistic regression credit assignment model; to our knowledge, this is the first regret guarantee for preference-based RL. We also discuss possible avenues for extending this proof methodology to analyze other credit assignment models. Finally, we evaluate the approach empirically, showing competitive performance against existing baselines

    Human Preference-Based Learning for High-dimensional Optimization of Exoskeleton Walking Gaits

    Get PDF
    Understanding users' gait preferences of a lower-body exoskeleton requires optimizing over the high-dimensional gait parameter space. However, existing preference-based learning methods have only explored low-dimensional domains due to computational limitations. To learn user preferences in high dimensions, this work presents LineCoSpar, a human-in-the-loop preference-based framework that enables optimization over many parameters by iteratively exploring one-dimensional subspaces. Additionally, this work identifies gait attributes that characterize broader preferences across users. In simulations and human trials, we empirically verify that LineCoSpar is a sample-efficient approach for high-dimensional preference optimization. Our analysis of the experimental data reveals a correspondence between human preferences and objective measures of dynamic stability, while also highlighting inconsistencies in the utility functions underlying different users' gait preferences. This has implications for exoskeleton gait synthesis, an active field with applications to clinical use and patient rehabilitation

    Preference-Based Learning for Exoskeleton Gait Optimization

    Get PDF
    This paper presents a personalized gait optimization framework for lower-body exoskeletons. Rather than optimizing numerical objectives such as the mechanical cost of transport, our approach directly learns from user preferences, e.g., for comfort. Building upon work in preference-based interactive learning, we present the CoSpar algorithm. CoSpar prompts the user to give pairwise preferences between trials and suggest improvements; as exoskeleton walking is a non-intuitive behavior, users can provide preferences more easily and reliably than numerical feedback. We show that CoSpar performs competitively in simulation and demonstrate a prototype implementation of CoSpar on a lower-body exoskeleton to optimize human walking trajectory features. In the experiments, CoSpar consistently found user-preferred parameters of the exoskeleton’s walking gait, which suggests that it is a promising starting point for adapting and personalizing exoskeletons (or other assistive devices) to individual users
    corecore